A First Training Run and Policy Collapse
With the REINFORCE algorithm under our belt, we can finally attempt to start training some models for Connect 4. However, as we’ll see, there are still some hurdles in our way before we get anywhere. It’s good to set your expectations accordingly because rarely if ever do things go smoothly the first time in RL. Runnable Example connect-zero/train/example1-collapse.py A simple MLP model As a fruitfly of Connect 4-playing models, let’s start with a simple multilayer perceptron (MLP) model that follows the model protocol we outlined earlier: that means that it has an input layer taking a 6x7 int8 board state tensor, a few simple hidden layers consisting of just a linear layer and a ReLU activation function each, and an output layer of 7 neurons without any activation function—that’s exactly what we meant earlier when we said that the model should output raw logits. ...